翻訳と辞書
Words near each other
・ Hilbert C*-module
・ Hilbert Circle Theatre
・ Hilbert class field
・ Hilbert College
・ Hilbert cube
・ Hilbert curve
・ Hilbert curve scheduling
・ Hilbert dimension
・ Hilbert field
・ Hilbert geometry
・ Hilbert High School
・ Hilbert Leigh Bair
・ Hilbert manifold
・ Hilbert matrix
・ Hilbert metric
Hilbert modular form
・ Hilbert modular surface
・ Hilbert number
・ Hilbert operator
・ Hilbert Philip Zarky
・ Hilbert plane
・ Hilbert projection theorem
・ Hilbert R-tree
・ Hilbert scheme
・ Hilbert Schenck
・ Hilbert series and Hilbert polynomial
・ Hilbert Shirey
・ Hilbert space
・ Hilbert spectral analysis
・ Hilbert spectroscopy


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hilbert modular form : ウィキペディア英語版
Hilbert modular form
In mathematics, a Hilbert modular form is a generalization of modular forms to functions of two or more variables.
It is a (complex) analytic function on the ''m''-fold product of upper half-planes
\mathcal satisfying a certain kind of functional equation.
Let ''F'' be a totally real number field of degree ''m'' over rational field. Let
:\sigma_1, \dots, \sigma_m

be the real embeddings of ''F''. Through them
we have a map
:GL_2(F)GL_2( \Bbb)^m.
Let \mathcal O_F be the ring of integers of ''F''. The group
GL_2^+(\mathcal O_F) is called the ''full Hilbert modular group''.
For every element z = (z_1, \dots, z_m) \in \mathcal^m,
there is a group action of GL_2^+ (\mathcal O_F) defined by
\gamma\cdot z = (\sigma_1(\gamma) z_1, \dots, \sigma_m(\gamma) z_m)
For g = \begina & b \\ c & d \end \in GL_2( \Bbb), define
:j(g, z) = \det(g)^ (cz+d)
A Hilbert modular form of weight (k_1,\dots,k_m) is an analytic function on
\mathcal^m such that for every \gamma \in GL_2^+(\mathcal O_F)
:
f(\gamma z) = \prod_^m j(\sigma_i(\gamma), z_i)^ f(z).

Unlike the modular form case, no extra condition is needed for the cusps because of Koecher's principle.
==History==

These modular forms, for real quadratic fields, were first treated in the 1901 Göttingen University ''Habilitationssschrift'' of Otto Blumenthal. There he mentions that David Hilbert had considered them initially in work from 1893-4, which remained unpublished. Blumenthal's work was published in 1903. For this reason Hilbert modular forms are now often called Hilbert-Blumenthal modular forms.
The theory remained dormant for some decades; Erich Hecke appealed to it in his early work, but major interest in Hilbert modular forms awaited the development of complex manifold theory.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hilbert modular form」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.